
PROGRAMMING I 1

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

Building Programs with Functions

Lets take a look at a small program that is similar to our Numbers.cpp
program.

int main()
{
 int choice;
 int i;

 do
 {
 cout << "Which sequence do you wish to display?"
 << endl;
 cout << "1 -- Odd numbers from 1 to 30" << endl;
 cout << "2 -- Even numbers from 1 to 30" << endl;
 cout << "3 -- All numbers from 1 to 30" << endl;
 cin >> choice;

 if ((choice < 1 || choice > 3))
 {
 cout << "Choice must be 1, 2, or 3" << endl;
 }
 }

 while ((choice < 1) || (choice > 3));

 switch (choice)
 {
 case 1:
 for (i = 1; i <= 30; i = i + 2)
 {cout << i << " ";}
 cout << endl;
 break;
 case 2:
 for (i = 2; i <= 30; i = i + 2)
 {cout << i << " ";}
 cout << endl;
 break;
 case 3:
 for (i = 1; i <= 30; i++)
 {cout << i << " ";}
 cout << endl;
 break;
 }
return 0;
}

PROGRAMMING I 2

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

The program works but it certainly isn’t elegant to jam all the code into the
main function.

This and many programs would be better if they are written with functions
that not only organize the code better but also allow snippets of code to be
reused again and again.

Consider the following flow chart that shows the different modules or
functions that could be called in a “better” version of this program.

In this case the main function “calls” the get_choice function to ask the user
what sequence to display. Next, the handle_choice function is called to
direct the program to one of the three functions under it.

Guidelines for Building Programs with Functions

Using functions helps the programmer develop programs that can be easily
coded, debugged, and maintained. Keep the following guidelines in mind when
building programs of more than one function.

1) Organization – A large program is easier to read and modify if its
logically organized into functions. It is easier to work with a program
in parts, rather than in one large chunk. A well-organized program,
consisting of multiple parts, is easier to read and debug. Once a single

PROGRAMMING I 3

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

function is tested and performs properly, you can set it aside and
concentrate on problem areas.

2) Autonomy – Programs should be designed so that they consist of

mainly standalone functions or modules. Each function is autonomous,
meaning the function does not depend on data or code outside of the
function any more than necessary.

3) Encapsulation – The term encapsulation refers to enclosing the details

of a function within the function itself, so that those details do not
need to be known in order to use the function.

4) Reusability – Because functions typically perform a single well-defined

task, they may be reused in the same program or even in other
programs.

A function can be written for any purpose and can also be a go-between for
other parts of the program. Meaning one function can call other functions in
the flow of the program.

There are two popular methods for designing programs using functions. The
first method, called top-down design begins with functions at the top of the
flow chart and works towards the functions at the bottom.

Bottom-up design begins at the bottom and works to the top.

The Syntax of Functions

So far every program we have created contains a main function. The
structure of the main program always looked like:

 int main()
 {
 //body of program
 return 0;
 }

When the program reaches the return 0; statement the value of 0 is
returned to the operating system. This value tells that the program ended
normally.

PROGRAMMING I 4

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

We return is an integer because we specified an int data type when the main
function was declared.

There are times when the function has no reason to return a value. To
prevent a value from being returned, the void keyword is used in place of the
data type.

For example, consider a function whose only purpose is to display
information:

void menu()
{

cout << "---------------------------------" << endl;
 cout << " Billy Bob's Food Truck" << endl;
 cout << "---------------------------------" << endl;
 cout << " Please make your selection:" << endl;
 cout << "---------------------------------" << endl;
 cout << " S - Sandwich-----------$3.00" << endl;
 cout << " C - Chips--------------$1.75" << endl;
 cout << " B - Brownie------------$1.00" << endl;
 cout << " R - Regualr Drink------$1.50" << endl;
 cout << " L - Large Drink--------$1.75" << endl;
 cout << "---------------------------------" << endl;
 cout << "---------------------------------" << endl;
 cout << " X - Cancel sale and restart" << endl;
 cout << " T - Total the sale" << endl;
 cout << "---------------------------------" << endl;
 cout << "---------------------------------" << endl;
 cout << setprecision(2);
 cout << "Your current total is: " << total << endl;
 cout << "---------------------------------" << endl;
 cout << "---------------------------------" << endl;
 cout << "Selection: ";
}

The main of the function is menu.

The void keyword indicates that no value is returned.

The parenthesis after the name lets the compiler know that menu is a
function.

PROGRAMMING I 5

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

The statements between the braces are executed when menu is “called.”

int main()
{
 menu(); //call to print the menu

return 0;
}

Function Prototypes

There is one more thing you have to do to make your functions work.

At the top of your program, you must tell the compiler that the function
exists. You do this by creating a prototype.

Basically, a prototype defines the function for the compiler.

Example

#include<iostream.h>

void print_title(); // prototype for print_title
void print_goodbye(); // prototype for print_goodbye

int main()
{

print_title(); // call to print_title

 // insert the rest of the program here

 print_goodbye();

 return 0;

} // end of main function

// Function to print program title to screen.
void print_title()
{

cout << "Tennis Tournament Scheduler Program\n";
 cout << "By Jennifer Baker\n";
}

PROGRAMMING I 6

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

// Function to print closing message to screen.
void print_goodbye()
{

cout << "Thank you for using the Tennis Tournament
Scheduler.\n";

}

The function prototype is identical to the first line of the function itself.

There is, however, a semi-colon at the end of the prototype.

Functions and Program Flow

To understand the program flow with functions you need to consider that
the program will now “jump around” to execute function calls instead of just
executing line by line as our programs have done so far.

Consider the order of execution shown in the program below:

1

2

3

4

5

PROGRAMMING I 7

http://www.myteacherpages.com/webpages/jsmoyer/ MR. JEREMY SMOYER

Scope of Variables

When building a program that consists of functions, you must be concerned
with how data is made available to the functions.

As programs get larger, it is important to keep control over variables to
prevent errors in your programs.

One way to do this is to make the data in the variables only accessible in the
areas that it’s needed.

When we only used main() our variables were accessible in that function only.
They wouldn’t be available to any other function.

The “availability” of a variable is known as its scope.

Variables in C++ can either be local or global. A local variable is declared
within a function and is only accessible in that function.

A global variable is declared BEFORE the main function and is accessible by
any function.

As you will see in the next section global variables should be used vary
sparingly and is considered sloppy coding.

